If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+2x+30=0
a = -4; b = 2; c = +30;
Δ = b2-4ac
Δ = 22-4·(-4)·30
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-22}{2*-4}=\frac{-24}{-8} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+22}{2*-4}=\frac{20}{-8} =-2+1/2 $
| 3y^2+24y-36=0 | | -3(-x+4)=12-x | | 5(m+4)=–2(–4–m)+3 | | 6(x+5)+4=-8(x-3)-4 | | 7x-5=5x+23 | | -9=-8y+5(y-3) | | 9r+2(4-2r)=71 | | 5/6+3x=2/3 | | 3y-y=32 | | 1.9=s/2 | | x-209=11x+121 | | 3{x+5}=30/5 | | 24h=672 | | 8-13x-6-8x=5 | | 4t–2t=10 | | p-3(p-4=2+ | | 4x-12=-x-3) | | 14.2=–4.2g+6.8 | | 9x=-3x-12 | | -0.2(.74)+2=g | | j+24=362 | | f(5)=4+8 | | 7q=-889 | | -55=x+4x+5 | | 3x-5(x-4)=-2+5x-13 | | 57=w-125 | | d/13=9 | | -30f=-720 | | -26=3(x-2) | | 3(x+4)+8=x+32 | | 12.9g+40.5=92.10 | | 10r=970 |